A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options

نویسندگان

  • M. Broadie
  • Y. Yamamoto
چکیده

This paper develops algorithms for the pricing of discretely sampled barrier, lookback and hindsight options and discretely exercisable American options. Under the Black-Scholes framework, the pricing of these options can be reduced to evaluation of a series of convolutions of the Gaussian distribution and a known function. We compute these convolutions efficiently using the double-exponential integration formula and the fast Gauss transform. The resulting algorithms have computational complexity of O(nN), where the number of monitoring/exercise dates is n and the number of sample points at each date is N , and our results show the error decreases exponentially with N . We also extend the approach and provide results for Merton’s lognormal jump-diffusion model. Received January 2003; accepted September 2004. Subject classifications: Finance: asset pricing. Area of review: Financial engineering. ∗This work was partially supported by NSF grant DMS-0074637 and by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists, 16760053, 2004 and Grant-in-Aid for the 21st Century COE “Frontiers of Computational Science.”

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Exponential Fast Gauss Transform Algorithms for Pricing Discrete Lookback Options

This paper presents fast and accurate algorithms for computing the prices of discretely sampled lookback options. Under the Black-Scholes framework, the pricing of a discrete lookback option can be reduced to a series of convolutions of a function with the Gaussian distribution. Using this fact, an efficient algorithm, which computes these convolutions by a combination of the double-exponential...

متن کامل

Fast Fourier transform technique for the European option pricing with double jumps

In this paper, we provided a fast algorithm for pricing European options under a double exponential jump-diffusion model based on Fourier transform. We derived a closed-form (CF) representation of the characteristic function of the model. By using fast Fourier transform (FFT) technique, we obtained an approximation numerical solution for the prices of European call options. Our numerical result...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

A fast high-order sinc-based algorithm for pricing options under jump-diffusion processes

An implicit-explicit Euler scheme in temporal direction is employed to discretize a partial integro-differential equation, which arises in pricing options under jumpdiffusion process. Then the semi-discretized equation is approximated in space by the Sinc-Galerkin method with exponential accuracy. Meanwhile, the domain decomposition method is incorporated to handle the non-smoothness of the pay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2005